LARGE SCALE HYDROGEN PRODUCTION AND LIQUEFACTION

Petter Neksåa,b and David Berstada

Tokyo, 2017-02-28

a SINTEF Energy Research, Department of Gas Technology, NORWAY
b NTNU, Department of Energy and Process Engineering, NORWAY

Contact: Petter Nekså (petter.neksa@sintef.no) and David Berstad (david.berstad@sintef.no)
Outline

1. *HYPER*- LIQUEFIED HYDROGEN PRODUCTION FROM SURPLUS WIND/HYDRO POWER AND FOSSIL SOURCES IN NORWAY (KPN project)
2. Scale and duty targeted by *Hyper* – possibilities in a Norwegian context
3. Research tasks in the *Hyper* project on hydrogen production and liquefaction
4. Conclusions
The Hyper concept
Scale and duty requirements – production volume rate and storage

• Envisioned production volume: **500 tons per day**
 - Required volume for one 160 000 m³ ship loading every 3 weeks (16 calls annually)
 - Comparison, Snøhvit LNG plant: 60–70 calls per year

• Energy flux in the hydrogen product stream:
 - 5.8 kg/s * 142 MJ_{HHV}/kg ≈ **820 MW_{HHV}**

• Corresponds to about **7 TWh per year** of energy output

• Theoretical minimum storage volume: 160 000 m³. Sketch below indicates size of 5 aligned 40 000 m³ spherical LH2 storage tanks (200 000 m³)
Main criteria
- Natural gas availability
- Grid power availability
- Port availability

Important cost drivers
- Natural gas price
- Electricity cost
- CAPEX
Scale and duty requirements –
Energy requirement

If 500 tons per day of hydrogen is produced **entirely by water electrolysis**

- Water splitting (70–75 % conv. efficiency ≈ 1 100–1 200 MW_{el}) and hydrogen compression, liquefaction and utilities (≈ 200–300 MW_{el}) total power requirement: ≈ 1.2–1.5 GW_{el}

- Annual electrical energy requirement (95% availability):
 - **11–13 TWh_{el}/a**
 - Corresponds to almost 10 % of annual hydro power production (most likely to be consumed in one point)

If 500 tons per day of hydrogen is produced **entirely by natural gas reforming**

- Natural gas requirement:
 ≈ 0.7–0.8 GSm³/a

- Compared to Hammerfest LNG: 15% of the NG liquefaction capacity and CO₂ sequestration about 2.5 times current rate

- Hydrogen liquefaction, CCS, utilities:
 ≈ 0.2–0.3 GW_{el}

- Annual electrical energy requirement (95% availability):
 - **1.4–2.2 TWh_{el}/a**
Norway's current energy production potential

- Norway's vast fossil energy surpluses are mainly exported
- The energy surplus from renewable hydropower and wind power is expected to increase in the long term
- Fossil resources will remain dominant in a fairly long-term time horizon
The Hyper concept with conventional technologies (baseline to be improved)

- Natural gas
- Furnace gas
- Air
- Water
- Waste O₂

Feedstock
- Pre reformer
- Steam-methane reformer
- High-temperature water-gas shift
- Low-temperature water-gas shift

Components
- Furnace
- Pressure-swing adsorption polishing
- aMDEA CO₂ absorption unit
- CO₂ conditioning and compression
- Waste O₂
- H₂ compression
- CH₂ buffer storage
- H₂ Liquefiers
- LH₂ storage

Outputs
- H₂
- Mainly H₂
- Mainly H₂ + CO₂
- Captured CO₂
- Boil-off H₂ and gas return
- Exhaust

Other
- Alkaline water electrolysis
- Water
Important research tasks in Hyper

Mature technology options exist for all parts of the production system, but advances are still required to improve the chain efficiency:

• Natural gas reforming, H_2/CO_2 separation, H_2 purification
 o Novel part-technologies (e.g. Pd membranes) and new combinations of complementary technologies
 o Carbon capture rate (CCR) → Target: 90-95 %

• Hydrogen liquefaction
 o Scaling up: 5-15 t/d → Target: x 10
 o Efficiency improvement: 11–13 kWh\textsubscript{el}/kg\textsubscript{LH}_2 → Target: ÷ 50 %

• Electrolysis
 o Optimal sizing and operation of the electrolysis system for renewable hydrogen
 → Target: Optimal integration of electrolysis

Obtaining detailed knowledge needed for value chain analysis on a level from unit operations to overall system evaluation
Conclusions

- Norway has a large potential for utilising its energy resources for large scale hydrogen production for export
 - A major portion of the hydrogen should probably be produced from natural gas with CCS
 - Several production sites in Norway are interesting for further investigation
 - More detailed case studies to understand barriers and cost picture are needed

- The Hyper project will contribute investigate the potential for large scale hydrogen production and liquefaction in Norway
 - through evaluation and analysis of the different elements required for hydrogen production and liquefaction

- Hydrogen production and export from Norway may be a very interesting option to:
 - valorisation of our energy resources
 - contributing to reductions in global CO₂ emissions - transport, industry and power prod
 - realising new industrial-scale CCS projects
Acknowledgements

KPN Hyper (2016–2019, 255107/E20)

Funding industry partners

Statoil

Research partners

SINTEF

NTNU

IAE

Contacts: Petter Nekså (petter.neksa@sintef.no) and David Berstad (david.berstad@sintef.no)

Project website: http://www.sintef.no/hyper
Technology for a better society