Unitized Regenerative Fuel Cells for Hydrogen Energy Storage Systems

Hiroshi Ito, Akihiro Nakano
National Institute of Advanced Industrial Science and Technology (AIST)

Naoki Miyazaki, Masayoshi Ishida
University of Tsukuba
Outline

1. Background / Scope

2. R&D on Unitized Regenerative Fuel Cell (URFC)

3. R&D on Hydrogen storage with metal hydride

4. Summary
A Synergy between Hydrogen and Electricity

Grid Connected RE-Hydrogen System

- Hydrogen may be used as fuel in almost every application where fossil fuels are being used today.
- Hydrogen is useful as an energy carrier, because energy storage density is significantly high with compressed form, liquefied form, or metal hydride.
- From sustainability point of view, a synergy between hydrogen and electricity and renewable energy sources is particularly promising.
- Hydrogen production with water electrolysis must be suitable for renewable energy sources.

Grid Independent RE-Hydrogen System

Totalized Hydrogen Energy Utilization System (THEUS)

To enhance the versatility of hydrogen energy in the industrial, the commercial, and the transportation sectors through THEUS.
Outline

✓ URFC and MH tank have been evaluated as key components of hydrogen energy system in stationary applications.

✓ A bench-scale URFC was installed and would be evaluated as an energy conversion system.

✓ MH tank was developed by own and evaluated in a long time operation.

✓ In particular, we have been focusing on the thermal energy recovery from the both operations of URFC and MH tank.
Overview of Unitized Reversible Fuel Cell (URFC)

URFC System

Advantages
- Long-term and large quantities of energy storage compared to current secondary batteries.
- Continuous running permits to make a rate of operation double compared to individual use of FC and Ely.
- Acquisition of oxygen as by-products

Cell reactions

Electrolysis
- Overall: \(\text{H}_2\text{O}(l) \rightarrow \text{H}_2(g) + \frac{1}{2}\text{O}_2(g) \)
- \(\text{H}_2 \) electrode (cathode): \(2\text{H}^+ + 2e^- \rightarrow \text{H}_2(g) \)
- \(\text{O}_2 \) electrode (anode): \(\text{H}_2\text{O}(l) \rightarrow 2\text{H}^+ + \frac{1}{2}\text{O}_2(g) + 2e^- \)

Fuel Cell
- Overall: \(\text{H}_2(g) + \frac{1}{2}\text{O}_2(g) = \text{H}_2\text{O}(l) \)
- \(\text{H}_2 \) electrode (anode): \(\text{H}_2(g) \rightarrow 2\text{H}^+ + 2e^- \)
- \(\text{O}_2 \) electrode (cathode): \(\frac{1}{2}\text{O}_2(g) + 2\text{H}^+ + 2e^- \rightarrow \text{H}_2\text{O}(l) \)

Possible applications
- Hydrogen energy storage system for load leveling at buildings
- Remote hospital
- Lake water purification
- Remote UPS system
Installation of a bench-scale URFC

Overview

- Installed in March 2014
- Supplied from Takasago Thermal Engineering Co.
Specifications of bench-scale URFC

System

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input power (rated)</th>
<th>4.5 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolysis</td>
<td>Gas production rate</td>
<td>H₂: 1.0Nm³/h, O₂: 0.5Nm³/h</td>
</tr>
<tr>
<td></td>
<td>Gas pressure</td>
<td>H₂: 0.9MPa(G)ₘₐₓ, O₂: Atmospheric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Power output (rated)</th>
<th>0.8 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel cell</td>
<td>H₂ utilization</td>
<td>>90%</td>
</tr>
<tr>
<td></td>
<td>H₂ pressure</td>
<td><0.05MPa(G)</td>
</tr>
</tbody>
</table>

Cell/stack

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane</td>
<td>Nafion 115</td>
</tr>
<tr>
<td>Electrocatalyst</td>
<td>H₂ side: Pt</td>
</tr>
<tr>
<td></td>
<td>O₂ side: Pt/Ir-black</td>
</tr>
<tr>
<td>Active area</td>
<td>250 cm²</td>
</tr>
</tbody>
</table>
Schematic draw of gas/liquid flows around URFC

Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Rated power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling water pump (Pump-1)</td>
<td>90 W</td>
</tr>
<tr>
<td>Water circulation pump (Pump-2)</td>
<td>60 W</td>
</tr>
<tr>
<td>H2 circulation pump (Pump-3)</td>
<td>26 W</td>
</tr>
<tr>
<td>Air blower (BLW)</td>
<td>500 W</td>
</tr>
</tbody>
</table>

- Hydrogen is recirculated.
- Air is humidified using a membrane humidifier.
Electrolysis operation - \(i-V \) characteristics

At 40°C

The effect of temperature on the performance was relatively large, while the effect of pressure was small.
The cell/stack performance was significantly influenced by the operating temperature, which should be higher than 60 °C.
Continuous operation

Since the operation interface was well-organized, the system could be operated and switched easily. Switching time was 5-10 min.
Experimental set-up of MH tank

Metal hydride bed in AIST

Schematic of the experimental set-up
Metal Hydride Tank

(Metal hydride alloy)
- Japanese version -
Composition: MmNi₅
Total weight: 50 kg
Size: 500 μm
Reaction heat Δh
Absorption: 28.93 kJ/molH₂
Desorption: 27.87 kJ/molH₂
Individual absorption/desorption test results

Operating conditions
(Absorption: 9 hour)
H₂ flow rate: 11.0 NL/min
Circulation water: 32 °C, 1.12 l/min
(Desorption: 13 hour)
H₂ flow rate: 7.6 NL/min
Circulation water: 12 °C, 0.46 l/min

Absorption

Desorption

\[Q_{cw} = 6.84 \text{ MJ}, \, \varepsilon = 89.4\% \]

\[Q_{cw} = 6.62 \text{ MJ}, \, \varepsilon = 89.8\% \]

Recoverd thermal energy from coolant: \(Q_{cw} \)

Reaction heat recovery rate: \(\varepsilon = (Q_{cw}/Q_{MHreact}) \times 100 \)

\[\varepsilon = (Q_{cw}/Q_{MHreact}) \times 100 \]

\[Q_{MHreact} = V_{H2} \times \Delta h \]

H/M=0.18-0.94
MH utilization ratio: 94%
GH₂: 5920 NL
Absorption-desorption continuous test results

(a) P-C isotherm

(b) Temperature of coolant

Reaction heat recovery rate, ε

Day1 AB 87.4 % DS 73.3 %
Day2 AB 75.4 % DS 72.5 %
Day3 AB 76.2 % DS 72.3 %
Summary

In this study, we investigated the performance of URFC and MH tank as key components of hydrogen storage system.

- The bench-scale URFC could operated quite successfully.
- The performance of each operation mode in URFC was comparable with that of individual apparatus of PEM electrolyzer and PEMFC.
- MH tank was developed and tested in daily cycle operation.
- Reaction heat recovery rate was excellent as over 70 %.
- The connection between URFC and MH tank was completed, and consolidated test is ongoing.
Thank you very much for your attention!

Hiroshi Ito
ito.h@aist.go.jp