Isochronal ice sheet model: Simulate englacial tracer transport to reconstruct past climates and ice sheet volumes

Andreas Born

Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland
Oeschger Centre for Climate Change Research

Department of Earth Science, University of Bergen, Norway
Bjerknes Centre for Climate Research
Marine Sediment Cores

Ice Cores

Numerical Modeling

Ocean Dynamics

Ice Sheet Dynamics

Decadal climate predictions, fisheries, etc.

Sea level rise
Ice cores contain the entire *depositional* and *dynamical* history of their ice sheets.
Oxygen Isotopic ratio ($\delta^{18}O$)
New approach
New approach
Eulerian description of flow

Accumulation is added to grid box at the surface

Vertical flow *through* model mesh, → numerical diffusion

Euler
(Semi-)Lagrangian description of flow

Accumulation creates new model layer

No flow through mesh necessary
Model-data comparison

![Graph showing model-data comparison with depth below surface on the y-axis and δ¹⁸O (%) on the x-axis.]
Model-data comparison
Model-data comparison
We need the power of **model-data synergies** to figure out what happened to the ice sheets in the past and might happen again in the (near) future.

We now can **model ice cores** and **englacial layers**.

Layer thickness evolves from a numerical necessity to a physically meaningful variable.

Outlook:

- Comparison with ice cores (and radiostratigraphy) for a comprehensive model validation and projections of sea level.
- Perfect (in the model) control on layer age helps identify regions where old ice may be found (IPICS Oldest Ice).

Contact: www.climate.unibe.ch/~born --- born@climate.unibe.ch