Japan-Norway/UiT cooperation & EISCAT_3D

Cesar La Hoz
UiT – The Arctic University of Norway

with contributions by
Dr Craig Heinselman, EISCAT Director, Kiruna, Sweden
Dr Satonori Nozawa, ISEE, Nagoya University
Dr Yasunobu Ogawa, NIPR, Tokyo
Dr Tac Nakajima, ISEE, Nagoya University

2016 June 3 Tokyo
Several optical instruments (NIPR/ISEE/UiT)
Meteor radar (NIPR/UiT)
MF radar (STEL/UiT/….)

Ny-Ålesund
Collaborative Rocket observations (ICI-4 UiO, etc.)

Bjoernoeya
Meteor radar (ISEE/UiT)

Andøya
Collaborative Rocket observations (DELTA-1, -2, etc.)

Longyearbyen

Kiruna
EISCAT UHF radars

Sodankylä

EISCAT UHF radars

UHF radars
EISCAT Tromsø site

Goals:
• Physics of the polar atmosphere and ionosphere
• Physics of the Aurora
• Applications to space weather

Close collaboration between UiT and Japanese institutes
ISEE/Nagoya Lidar Observatory in Tromsø

5 Lidar beams

Lidars control receivers

5 telescopes/receivers
Development of Superconducting Millimeter Wave Radiometer for Observation of Minor Molecules in the Middle Atmosphere

Tac Nakajima
Nagoya University Japan
(Visiting Scientist – University of Tromsø)
Nov 2015 – Aug 2016
Development of Superconducting Millimeter Wave Radiometer for Observation of Minor Molecules in the Middle Atmosphere

Tac Nakajima
Nagoya University Japan
(Visiting Scientist – University of Tromsø)
Nov 2015 – Aug 2016
Our Observatories

Coming soon to
Tromsø/Norway

Syowa station/Antarctica
Rikubetsu/Hokkaido
Rio Gallegos/Argentina
Atacama/Chile
Measurement of O₃ & NO

Nitric Oxide NO destroys Ozone O₃

* O₃ and NO in Antarctica (Syowa Station)

Isono et al. GRL, 41, 7, 2568 (2014)
Visits to the EISCAT Tromsø/Svalbard & UNIS from Japan

Purpose of the visits: Conducting EISCAT special observations, installing and maintenance of optical/radar instruments at the sites, discussion about collaborative, ...

Year 2013: 20 scientists in total (including 4 students)
Year 2014: 21 scientists in total (including 4 students)
Year 2015: 25 scientists in total (including 3 students)

Visits to Japanese institutes from Norway

Purpose of the visits: Collaborative studies, education, ...

Sep. 2006-June 2007: 1 exchange PhD student to STEL Nagoya Univ. from UiT.
March-May 2007: Prof. Moen (UiO) as a visiting professors of STEL Nagoya Univ. and 1 exchange PhD student to STEL Nagoya Univ. from UiO.
June, 2007: Prof. Moen et al. (6 scientists (UiO/UNIS) in total), study and observation of optical lab in NIPR and scientific discussion in a meeting
March-May 2010: Prof. Brekke (UiT) as a visiting professors of STEL Nagoya Univ.
March 2015- Feb 2015: 1 exchange PhD student to NIPR from UiT.
Starburst Galaxy M82: 12 million lightyears away

VLBI – Very Long Baseline Interferometry
European VLBI Network – EVN
EISCAT_3D will use same technology:

Aperture Synthesis Imaging Radar – ASIR

Radar transmitter as a camera flash

need: Phased Array Technology
Phased Array Technology
10,000 Antennas per site
3x10,000 antennas in 3 Nordic countries
+ 5,000 dual transmitters in Norway
Antenna Metal Support
Equipment Cabinets

crossed-dipole antenna
The Holographic Radar
Lind et al.

EISCAT_3D key capabilities:

- Local Volumetric Imaging
- Remote Volumetric Imaging
- Aperture Synthesis Imaging
- Sensitivity
- Transmitter agility

3-D space Coverage scalars
3-D Vectors & Tensors anisotropy
3-D space resolution fine structure
Low SNR & time resolution
Arbitrary modulation/polarisation
1. EISCAT_3D Radar Array
- 109 Sub-arrays
- 91 Antenna elements/Sub-array
- Dual polarization, crossed dipoles
- 182 dipoles/Sub-array

2. Front end
- Power Supply
- Exciter
- SSPA
- T/R
- LNA
- Ant
- RF in Fc 233.3 MHz
- Anti-aliasing
- RF 233.3 +/- 15 MHz

3. Sub-array Beam former (BW 30 MHz)
- ADC 16 bits
- 60 Ms/s
- x 182
- Subarray Beam Former 5.4 Tflops/s

4. Transmit unit
- High power transmitters
- Digital electronics
- Timing control systems
- RF Electronics
- Network hardware
- Computers
- Storage
- Services
- Metal structures
- 10,000 – 30,000 units

5. Pulse & Steering Control
- Start
- Ctrl
- Ctrl

6. Operations center
- 20 PB storage
- 500 Tflop/s

7. Time and Frequency
- WR Slave
- Clock & trig gen
- Clock
- WR
- x 109
- WR
- White Rabbit Master
- Frequency Std

8. Computing System (BW 5 MHz)
- Process Computer 55 Tflops/s
- Ring Buffer 86 TB RAM
- Overall Beam Former 22 Tflops/s
- 6.3 Gbit/s (BW 5 MHz)
- 38 Gbit/s (BW 30 MHz)

9. Network
- VPN
- 8.5 Gbit/s (BW 5 MHz)
- 18 Gbit/s (BW 30 MHz)

10. National e-Infrastructures
- Archive
- 2 PB disk
- 2 x 10 PB tape
- 50 Tflops/s

Procurement by international tender
PANSY Radar in Syowa Antarctica

Made in Japan:
- Distributed Transmitters for phased arrays
- Operation in extreme polar conditions
Funding status 1

Oct. 2015

Table 3. Investment by Item (kSEK)

<table>
<thead>
<tr>
<th>Stage #</th>
<th>Item</th>
<th>kSEK</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>Project management</td>
<td>42 250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project engineering</td>
<td>(*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramfjordmoen test array (PET)</td>
<td>16 420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operations Centre</td>
<td>2 855</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National e-infrastructure</td>
<td>2 136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skibotn TX1 5 MW</td>
<td>306 563</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bergfors R1</td>
<td>151 171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Karesuvanto R2</td>
<td>149 314</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science data products</td>
<td>13 880</td>
<td>684 589</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Upgrade transmitter to 10 MW</td>
<td>175 896</td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>Andøya R3</td>
<td>154 988</td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>Receiver R4</td>
<td>155 179</td>
<td></td>
</tr>
<tr>
<td>Total in kSEK: Stages 1, 2, 3, 4</td>
<td>1 170 649</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) kSEK 34 885 spread over the other posts.

Implementation in 4 Stages

74 M€ 9.1 BY

1 170 649
Funding status 2

Oct. 2015

<table>
<thead>
<tr>
<th>Country</th>
<th>Finland</th>
<th>Japan</th>
<th>Norway</th>
<th>Sweden</th>
<th>UK</th>
<th>EU-InfraDev</th>
<th>Stage 1</th>
<th>Raised</th>
<th>Shortfall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.8 M€</td>
<td></td>
<td>228.0 MNOK</td>
<td>120.0 MSEK</td>
<td>229 MSEK</td>
<td>3.1 M€</td>
<td>689 MSEK</td>
<td>497 MSEK</td>
<td>192 MSEK</td>
</tr>
<tr>
<td></td>
<td>120 MSEK</td>
<td></td>
<td>229 MSEK</td>
<td>120 MSEK</td>
<td>229 MSEK</td>
<td>29 MSEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1689 MSEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>689 MSEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>497 MSEK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72.2 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192 MSEK</td>
<td></td>
<td></td>
<td>27.8 %</td>
</tr>
</tbody>
</table>
Acknowledgement

Many people have contributed to the success of the Japan-Norway/UiT collaboration over more than 25 years. I consider justified to single out three great pioneers:

- Prof. Em. Ryoichi Fujii, Nagoya University
- Prof. Em. Takahiko Aso, NIPR
- Prof. Em. Asgeir Brekke, University of Tromsø
PANSY Radar in Syowa Antarctica

Made in Japan:
• Distributed Transmitters for phased arrays
• Operation in extreme polar conditions

arigatou gozaimasu!