Technical & Economic aspects related to H2 Fuel Cell Ships

Øystein Ulleberg
Principal Scientist
Institute for Energy Technology
Kjeller, Norway

Japan-Norway Energy Science Week 2015
27 May 2015, Tokyo
Institute for Energy Technology

- Independent foundation est. 1948
- R&D on Energy Technologies
- Laboratory intensive activities
- 600 employees (Kjeller & Halden)
- Turnover: MNOK 950 (15 billion JPY)
- Contract Research
- Internationally oriented
Energy & Environmental Technology

- Main areas
 - Renewable Energy: Solar cells, Wind energy, **Hydrogen**
 - Energy systems analysis
 - Climate technology; CO$_2$-management
 - Battery technology
 - Radioactive waste management
- 70 employees
- Turnover: MNOK 100 (1.6 billion JPY)
Renewable Energy & Hydrogen Research & Development → Demonstration & Innovation

- Fuel Cell Cars (Hynor)
- Passenger Ferries (Rødne)
- Fuel Cell Buses (Ruter)
- Supply Ship (Eidesvik)

Mobile Applications
Hydrogen & Fuel Cells
Maritime Applications
H2-ship Feasibility Study (2014)

Hydrogen as Fuel for Ships – From Renewable Energy to Zero Emission Propulsion

- Project Partners:
 - Ship design: NCE Maritime CleanTech
 Wave Propulsion AS
 Hordaland Maritime Miljøselskap AS
 - Ship building: Brødrene Aa
 - Ship operation: L. Rødne og sønner AS
 Eidesvik Offshore ASA
 - Ship power systems: Westcon Power and Automation AS
 Wärtsilä Norway AS
 - Energy supply: SKL Produksjon AS
 - Fuel Cell systems: CMR Prototech
 - Hydrogen systems: Institute for Energy Technology
 - Funding: Partners & Transnova (now Enova)
H2-ship Feasibility Study (2014)

Scope of Work

• Regulatory issues for use of Hydrogen & Fuel Cells in ships

• Preliminary Design & Costing of a Hydrogen Fuel Cell Passenger Ferry
 → Demonstration Project (short-term perspective)

• Case Study: H$_2$-production & Supply to a Fuel Cell Ship
 → Business Case: Offshore Supply Ship (long-term perspective)
Regulations for Ships

National Laws and Regulations:

International Convention / Codes / Agreements / National Regulations

Technical Codes - Class / Standards / National Regulations

Survey / Inspections / Certificates
Regulations for H2 & FC Ships?

- **Norwegian Maritime Authority**
 - *Regulation on construction & operation of passenger ferries fueled by gas*
 - Liquefied or compressed gas (LNG) for engines, turbines, **and** fuel cells
 - H$_2$ **not** included in regulation

- **IGF Interim Guideline (International Gas Fuel)**
 - *Int’l Code of Safety for Ships using Gases or other Low flashpoint Fuels*
 - Code for LNG, ready for methanol and ethanol, but H$_2$ **not** included in code

- **Classifications, Codes & Standards**
 - GL: *Guidelines for the Use of Fuel Cell Systems on Board of Ships & Boats*
 - DNV: *Fuel Cell Installations*
 - The Norwegian Maritime Authority is **not** using DNV GL Codes & Standards
Recommended Approval Process for Hydrogen & Fuel Cells in Ships

- Follow the IMO-guideline (International Maritime Organization):
 - Guidelines for the Approval of Alternatives ...(24 June 2013)

- Case-by-Case Approval Process:
 1. Development of a Preliminary Design
 2. Approval of Preliminary Design
 3. Development of Final Design
 4. Final Design Testing & Analyses
 5. Approval
Hydrogen Fuel Cell Passenger Ferry Preliminary Design

- **Main Specifications**
 - 4 × 2-hour trips per day (55 km/h)
 - Electric Motors: 2 × 750 kW
 - PEMFC modules: 8 × 200 kW
 - Li-ion battery: 50-100 kWh
 - GH2-storage: 330-660 kg
Hydrogen Fuel Cell Passenger Ferry
Preliminary Design & Costing

• H2 FC sub-systems
 • PEMFC modules & BoP
 • Li-ion Batteries & BMS
 • DC/DC converters
 • DC/AC inverters
 • Safety & Control Systems
 • AC motors, Gears & Propellers

• Key Features:
 H2 Fuel Cell vs. Diesel ICE
 Weight: ca. 18 tonnes 13 tonnes
 Volume: ca. 30 m³ 8.5 m³
 CAPEX: ca. 28 MNOK 3.75 MNOK
 CAPEX + OPEX: ca. 450 million JPY 60 million JPY
 CAPEX + OPEX: ca. 131 MNOK 80 MNOK
H2-Production & Supply to a Fuel Cell Ship
Case Study: Water Electrolysis + H2 Liquefaction

Hydro Electric Power → Regional Grid → Water Electrolysis → Hydrogen Liquefaction → Fuel Cell Ship (4 MWel)
Techno-Economic H2 Production Simulator
Data based on Standard Industrial H2 Technology
H2-infrastructure for FC Supply Ship Design & Assumptions

• **Overall System Design**
 - Average H₂-consumption: 1800 kg/day 12 500 kg/week
 - Alkaline Water Electrolyzer: 850 Nm³/h 4.2 MW
 - LH₂-production: 850 Nm³/h 0.9 MW
 - LH₂-storage: 12 500 kg
 - LH₂-pump: 175 000 liter/h 0.8 MW

• **Main Assumptions**
 - Power demand water electrolysis: 4.9 kWh/Nm³
 - Power demand overall LH₂-plant: 1.1 kWh/Nm³
 - Electricity costs: 0.5 NOK/kWh (8 JPY/kWh)
 - O&M costs: 4% of Annual CAPEX
 - Life time & interest rate: $n = 20$ years, $i = 5\%$
H2-infrastructure for FC Supply Ship

Main Results

- **Capital Costs (CAPEX):** 112 MNOK (1.8 billion JPY)
 - Water Electrolyzer: 36 MNOK (32%)
 - LH$_2$-production: 51 MNOK (46%)
 - LH$_2$-storage: 14 MNOK (13%)
 - LH$_2$-pump: 10 MNOK (9%)

- **Annual Costs:** 32 MNOK/year (512 million JPY)
 - CAPEX: 9 MNOK/year (28%)
 - OPEX (mainly electricity): 23 MNOK/year (72%)

- **Hydrogen Cost:** 50 NOK/kg (800 JPY/kg)
Supply Ship – Sensitivity Analysis
CAPEX & OPEX vs. Electricity Cost

![Graph showing the relationship between Relative Costs (%) and Electricity Cost (NOK/kWh). The graph has two curves, one for OPEX and another for CAPEX. As the electricity cost increases, the relative costs of both CAPEX and OPEX decrease.]
Business Case for a FC Supply Ship?
LH₂-production costs normalized wrt. FC power on ship

![Chart](image)

- **Today**
- **0.20 NOK/kWh**
- **5 x Ships**
- **No electricity tax**
- **No grid fee**
- **LNG**

- **NOK per kWh**
- **LNG cost (max)**
- **LNG cost (min)**
- **CAPEX Liquefaction**
- **CAPEX Electrolyzer**
- **OPEX**
- **Electricity Fees**
- **Electricity Cost**
Conclusions & Recommendations

• **New national & international regulations** for H2 FC ships need to be established

• A passenger ferry could be designed, built & demonstrated in Norway, with the aim to **validate H2 FC system design and technology**

• The Western part of Norway has favorable conditions for establishing RE/H2-infrastructure for FC ships, but **tax incentives are needed**

• Hydrogen & Fuel Cell Ships is an **excellent opportunity for collaboration between Norway & Japan**!
Urban Water Shuttle
A New Norwegian Patented Concept
Thank you for your attention!

IFE, Research for a better future